論理学ノート2
2005年1月19日まずは定理の証明から
Theorem LetΣbe a set of wff’s, α,βalso wffs.
Then Σ,α TE(以降Tautologically Equiv.をこう表記)β iff ΣTEα->β
"->" Σ,α TEβmeans that whenever we have a truth assignment U, whatever U’(sigma)=T (for all sigma inside Σ) and U’(α)=T, then U’(β)=T also.
Now show that whenever U’(sigma)=T for all sigma in Σ, then U’(α->β)=T also.
If α is false, done. We only need to show if α is true, βalso true.
U’(α->β)=T means that whenever U’(α)=T, then U’(β) =T also. This is what we given by Σ,α TEβ
"β Prove by Contradiction.
Assume Σ,α NTEβ
Σ,αNTEβ means there is a truth assignment s.t U’(sigma) for all sigma in Σ, and U’(α)=T but U’(β)=F.
But this means for this U, U’(α->β)=F whereas U’(sigma)=T for all sigma in Σ
Contradiction. Q.E.D
Example
a->b,b->c TE a->c is reasonable, but
b->(a->c)TE b->c is false.
Why? Make a truth assignment where U’(a)=T and U’(c)=F
Set a s.t U’(a)=F, and you get U’(b->(a->c))=T, but U’(b->c)=F
for example, a=c=A and notA, b=A or notA
うー、打つだけで疲れた。追記予定
Theorem LetΣbe a set of wff’s, α,βalso wffs.
Then Σ,α TE(以降Tautologically Equiv.をこう表記)β iff ΣTEα->β
"->" Σ,α TEβmeans that whenever we have a truth assignment U, whatever U’(sigma)=T (for all sigma inside Σ) and U’(α)=T, then U’(β)=T also.
Now show that whenever U’(sigma)=T for all sigma in Σ, then U’(α->β)=T also.
If α is false, done. We only need to show if α is true, βalso true.
U’(α->β)=T means that whenever U’(α)=T, then U’(β) =T also. This is what we given by Σ,α TEβ
"β Prove by Contradiction.
Assume Σ,α NTEβ
Σ,αNTEβ means there is a truth assignment s.t U’(sigma) for all sigma in Σ, and U’(α)=T but U’(β)=F.
But this means for this U, U’(α->β)=F whereas U’(sigma)=T for all sigma in Σ
Contradiction. Q.E.D
Example
a->b,b->c TE a->c is reasonable, but
b->(a->c)TE b->c is false.
Why? Make a truth assignment where U’(a)=T and U’(c)=F
Set a s.t U’(a)=F, and you get U’(b->(a->c))=T, but U’(b->c)=F
for example, a=c=A and notA, b=A or notA
うー、打つだけで疲れた。追記予定
コメント